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Optical parametric oscillator frequency tuning and control
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The frequency-tuning and -control properties of monolithic doubly resonant optical parametric oscillators are
analyzed for stable single-mode pump radiation. Single-axial-mode operation is observed on the idler and the
signal for both pulsed and continuous pumping. Projections are made for tuning-parameter tolerances that are
required for maintenance of stable single-frequency oscillation. Continuous frequency tuning is possible
through the simultaneous adjustment of two or three parameters; thus the synthesis of specific frequencies
within the broad tuning range of the doubly resonant optical parametric oscillator is permitted.
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1. INTRODUCTION

An analysis of the frequency-tuning properties of doubly

resonant optical parametric oscillators (DRO's), based on

both experimental observations and theoretical modeling,

is presented. Specific details in this presentation of fre-

quency control and synthesis apply to monolithic DRO's

constructed from LiNbOa. Where possible, however, re-

sults are given with more general applicability. The pur-

pose is achievement of a quantitative understanding of

the conditions required for stable single-axial-mode para-

metric oscillation and the resulting frequency stability

of the DRO output. Approaches to frequency synthesis

and continuous frequency tuning that are based on the

simultaneous adjustment of two or three tuning variables

are described.

The potential of optical parametric oscillators (OPO's)

for the generation of tunable coherent radiation was rec-

ognized more than twenty-five years ago.' The complex

tuning properties of DRO's were also revealed in early

demonstrations and analyses. 2-4 Optical parametric os-

cillation has been discussed in detail in a number of re-

views, 5-7 and it is a subject treated in more general terms

in a number of books that discuss nonlinear optics, s Im-

provements in the quality of nonlinear-optical materials

and in the coherence of pump sources led to a number of

advances in the performance of OPO's. Using recent ex-

perimental results obtained with stable single-mode pump

sources and monolithic DRO's constructed from high-

quality LiNbOa nonlinear-optical material, we are able

to apply and to extend the earlier analyses.

Resonance of both the signal and the idler frequencies,

double resonance, offers the advantage of a lower thresh-

old for parametric oscillation than in single resonance.

Double resonance also provides additional frequency selec-

tivity in OPO operation. These desirable properties of

double resonance, however, come with a considerable in-

crease in the complexity of tuning and with more restric-

tive tolerances on pump stability and cavity stability.

Diode-pumped solid-state lasers provide the required

pump-frequency stability, and monolithic cavities provide

the required mechanical stability in the OPO. Continu-

ous tuning is difficult in DRO's, which typically tune

with axial mode hops and cluster jumps over hundreds of

axial modes. Nevertheless, with improved pump sources

and nonlinear-optical materials coupled with multiple-

parameter control, DRO's can in principle be operated

stably and tuned continuously, thus widening their range

of applications.

DRO's can provide highly coherent output, reproduc-

ing the statistical properties of the pump with little addi-

tional noise. This was shown theoretically by Graham

and Haken 9 in a quantum-mechanical analysis of the

DRO, and it was demonstrated in experimental measure-

ments of the coherence properties of the DRO. The

quantum-mechanical analysis showed that the diffusion

of the sum of the signal and the idler wave phases follows

the phase diffusion of the pump wave adiabatically. Al-

though the phase difference of the signal and the idler

may diffuse in an undamped manner, the statistical prop-

erties of a DRO are basically the same as those of an ideal

laser. A result of these properties is the addition of only a

small amount of phase noise in the output of the DRO

above that present in the pump. This has been confirmed

in coherence measurements of the output of a cw DRO. '°

For periods of -1 min, the free-running DRO that was not

servo locked oscillated on a single mode pair without a

mode hop. That the DRO did not add significant excess

linewidth over that present on the pump was demon-

strated with the measurement of beating between the

DRO output and an independent diode-laser-pumped solid-

state laser during the periods between mode hops. The

beat-note linewidth was 13 kHz, which was the expected

value for the typically 10-kHz linewidths of the pump

laser and the independent reference laser. Additional co-

herence measurements showed that the signal and the

idler were phase anticorrelated when referenced to the

pump laser. Also, the width of the signal-idler beat note

with the DRO near but not at degeneracy was less than

1 kHz. The signal-idler beat note indicates the frequency

fluctuations added to the DRO output in addition to those

present on the pump.

The results of the classical stationary analysis pre-

sented here are consistent with the earlier analyses and

measurements. The main purpose of this presentation is

to explain the complex tuning properties of the DRO in

order to permit fuller use of its remarkable coherence and

spectral properties. The theoretical presentation of
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Section 2 begins in Subsection 2.A with a qualitative

overview of DRO tuning. This overview is used to estab-

lish the extensive terminology required for the discussion.

In Subsection 2.B the threshold condition for paramet-

ric oscillation is reviewed and recast in terms that are

more easily adapted to tuning calculations. The theoreti-

cal basis of frequency selection is discussed in Sub-

section 2.C. Experimental tuning data are presented in

Section 3. The degree to which our theoretical model de-

scribes the observed tuning justifies some confidence in

its use for predictive calculations in Section 4. Results

are summarized and discussed in Section 5. Finally, the

properties of MgO:LiNbOa that are required for modeling

the experimental data are reviewed in Appendix A.

2. THEORY

A. DRO Tuning Overview

A nonlinear-optical material pumped by intense optical

radiation at frequency _op can provide gain at two lower

frequencies, called the signal and the idler and related by

the conservation-of-energy condition

_op = tos + toi. (1)

The parametric interaction is phase dependent, and proper
phasing is required for energy to flow frown the pump field to

the signal and the idler fields. Phase-velocity matching

ensures that the relative phases of the three_ waves do not

change with propagation through the nonlinear material.

Phase matching is described by the wave-vector mismatch,

which for the case of collinear propagation can be expressed

by the scalar relationship

Ak = kp - k_ - ki = (nptop - n_to_ - n,wi)/c, (2)

where kp, ks, and k_ are the respective wave-vector magni-

tudes of the pump, the signal, and the idler waves, with

corresponding indices of refraction given by np, n,, and n,

and c is the velocity of light. Useful parametric gain

exists in the range of signal and idler frequencies for

which [Ak I _< rr/l, where l is the length of the nonlinear

material. The parametric gain is maximum near hk = O.

Phase matching is often achieved by controlling the bire-

-fringence of a nonlinear-crystal through temperature or

angle Of propagation.

An OPO requires feedback at either (or both) the signal

or the idler frequencies. If there is feedback at only one

frequency, the device is called a singly resonant oscillator.

Doubly resonant oscillators have feedback at both the sig-

nal and the idler frequencies. Feedback can be provided

by placing the nonlinear material in a cavity formed by

two external mirrors, or, in the case of monolithic OPO's,

highly reflecting coatings can be applied directly to the

nonlinear material. Ring-cavity configurations offer the

advantages of reduced feedback to the pump source and

improved OPO conversion efficiency. _I Figure 1 illus-

trates schematically several configurations for parametric

oscillators. Both standing-wave and ring-cavity mono-

lithic DRO's were used for the experimental observations

described in this paper. The tuning properties were

quite similar, and the same model of tuning properties

could be used for both, because the return path length dif-

fered little from the gain path in the ring resonators.
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Phase matching is the major factor in determining

broad tuning properties of an OPO, although cavity reso-

nances have the major effect on details of frequency tun-

ing. The conditions top = to, + toi and Ak = 0 define
phase-matching curves. The most commonly shown OPO

phase-matching curve is the parabolalike shape for type-I

phase matching in a birefringent crystal, for which the

signal and the idler waves have the same polarization and

the pump wave has the orthogonal polarization. Fig-

ure 2(a) shows a near-degeneracy (to, _ toi) section of the

temperature-tuning curve for a LiNbOa noncritically

phase-matched OPO. Propagation is along a crystal prin-

cipal axis in noncritical phase matching, which reduces

dependence on propagation direction and eliminates bire-

fringent walk-off.

The Spectral width of the parametric gain is also deter-

mined by phase matching. A typical spectral distribution

for single-pass gain at a fixed temperature is shown in

Fig. 2(b). Doubly resonant oscillation also entails simul-

taneous signal and idler resonance. Dispersion causes

different cavity axial-mode frequency spacings for the two

waves, and the simultaneous resonance condition thus

occurs only at intervals in frequency. The regions of

simultaneous resonance, called cluster frequencies, are in-

dicated in Fig. 2(c). Early DRO's were observed to oscil-

late on a group or cluster of adjacent cavity axial modes.

The wavelength of the cluster would at first shift con-

tinuously with tuning and then exhibit a discontinuous

(a) l,m [ ]
m, _ Ip(±)

ii----_ I_(_)

ls(O ) _ ---._ li(_ )

COp= CO_+COi, IAkl < =/_, Ak = kp- k s - k i

(b) ---(i) _ _ ls Ip

lp _ li
mirror mirror

t 2

(c)
_: _ _ i (t)

(i) _ _ P
Ip _ _ "-'4_ Is

, _ -"_ Ii
M1 M2

(t)
(i) Ip

(d) _ :.--

M1 M2

Fig. 1. (a) Schematic representation of optical parametric ampli-

fication. Optical parametric oscillators can be formed by the ad-
dition of mirrors that are separate from the nonlinear material,
as shown in (b). Monolithic oscillators (c) and (d), with highly
reflecting coatings (M's) applied directly to the nonlinear mate-
rial, offer the advantages of low loss and rigidity that are impor-
tant in stable, single-frequency DRO operation. Ring oscillators
(d) offer the advantages of reduced feedback and improved con-
version efficiency over standing-wave oscillators.
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Fig. 2. (a) Typical OPO tuning curve near the degeneracy fre-
quency fo = [J2, where fp is the pump frequency. The signal
and the idler frequencies are shown for a LiNbOa OPO as a func-
tion of the tuning parameter, in this case temperature. For a
fixed value of the tuning parameter, single-pass parametric gain
exists in bands that are centered on the phase-matching wave-
lengths, as shown in (b). DRO's have the added constraint that
the signal and the idler cavity resonances must coincide in satis-
fying the condition fo = /, + 1;, which results in output at cluster
frequencies (c). Only two or three clusters, represented by open
horizontal bars, are located within the gain bandwidth. Usually

one cluster, represented by the longest open bar, dominates.

jump to another cluster of modes. The curves of Fig. 2

are intended to illustrate some general properties of the

frequency tuning of DRO's. The curves were calculated

for the 12.5-mm-long monolithic MgO:LiNbO_ oscillators,

pumped at 564 THz (532 nm), that are discussed in

this paper.

A useful device for understanding the requirement for

simultaneous cavity resonances is a type of diagram used

by Giordmaine and Miller2; the cavity resonances near

the oscillating signal and idler frequencies are plotted as a

function of the respective frequencies, as shown schemati-

cally in Fig. 3. The difference between signal and idler

axial mode spacings, _ws and _w,, respectively, is exagger-

ated in this figure for the purpose of illustration. One

frequency, here the signal, increases from left to right.

The other frequency scale, the idler, is determined by the

first scale and the conservation-of-energy condition in

such a way that a vertical line drawn through the diagram

will give signal and idler frequencies that satisfy Eq. (1).

If a signal-idler resonance pair lies on a vertical line, it

satisfies the simultaneous resonance condition. If the

temperature or the dc electric field applied to the crystal

is changed, the position of the resonances will advance

along the scales, one to the left and the other to the right,

at slightly different rates because of dispersion, but the

scales will not change. If pump frequency is changed, the

frequencies of the cavity resonances will not change, but

one of the frequency scales will be displaced with respect

to the other, and the respective resonances will move with
that scale.

Two types of discontinuous frequency shift are indi-

cated in Fig. 3. One is an axial mode hop, and the other

is a cluster jump. As a tuning variable is changed, better

coincidence in satisfying the conservation-of-energy con-

dition is attained on adjacent signal and idler axial modes.

It then becomes advantageous for the oscillation frequen-

cies to hop to the adjacent modes, to one higher in fre-

quency and the other lower. This type of discontinuous

frequency change is referred to as a mode hop. Other fac-

tors such as phase matching also affect the selection of the

oscillation frequencies. As the tuning variable changes,

phase matching also changes, and at some point it is ad-

vantageous for the oscillator to jump to the next cluster.

This is illustrated in the schematic tuning curve of Fig. 4.

The signal or the idler oscillation frequency progresses

along a cluster curve in a series of mode hops until another

cluster curve more closely approaches phase matching.

At that point the larger discontinuous frequency change

of a cluster jump takes the oscillation to the next cluster

curve. Figures 3 and 4 are only schematic, with disper-

sion greatly exaggerated. Typically there several hun-

dred axial modes between adjacent cluster frequencies.

Simultaneous resonance of signal-idler mode pairs oc-

curs as a tuning parameter is continuously adjusted. In

general, however, coincidence is not perfect, and oscilla-

tion of a particular mode pair depends on the degree of

frequency matching and phase matching. The frequency

mismatch hw of _i_sigi_al-idler mode pair can be defined as
the shift in frequ_i_y that is required of either the signal

or the idler in ord'e_to bring the two resonances into coin-
_, i.I_, _ :£ : .:.,

-_:_".... I ./_ _ %
J.,-< I .Z',,..

, d t , /b J
mo0oho0- ,, i 1

, :i"

:: _ AO}i -,_. i I _ I I V_"i "j I 1_,

Fig. 3. Diagram _ that shows the relationship between the DRO
signal and idler resonance frequencies and the conservation-of-
energy condition. Signal resonances are plotted as a function of
signal frequency _o_ on an ordinary linear scale, with frequency
increasing from left to right. The idler frequency scale is deter-
mined by that of the signal and the relationship _o = _o_ + _o,.
In the display of idler resonances, therefore, frequency increases
from right to left. A signal-idler pair that has both resonances

centered on a vertieal line are in coincidence, satisfying _op --
co, + w,. In general there will be some frequency mismatch h_o
for each mode pair. The frequency mismatch is the frequency
shift that is required in order for either signal or idler resonance
to produce coincidence. The detail on the left-hand side shows
the frequency mismatch ±_o for a mode pair and its components
&_o, and 2_o_, which are the respective frequency displacements
from the centers of the signal and the idler cavity resonances to
the frequencies most favorable for parametric oscillation. Dis-
persion is exaggerated in this schematic representation. There
are typically hundreds of cavity axial modes between the cluster
frequencies for which h_ = 0.
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Fig. 4. Schematic representation of a detailed portion of an ide-
alized tuning curve for a DRO. Oscillation progresses along clus-
ter curves in discontinuous frequency changes, called axial mode
hops, as a tuning variable is changed. A larger discontinuous
frequency change, a cluster jump, occurs when better phase
matching exists on an adjacent cluster curve.

cidence to satisfy Eq. (1). It is convenient to express the

frequency mismatch as the sum of two components:

Ao_ = Aeo, + Ao_,. (3)

Here A_o, is the frequency shift from the peak of the sig-

nal resonance to the signal frequency that is most favor-

able for oscillation for that mode pair. Correspondingly,

Aw_ is the frequency shift from the peak of the idler reso-

nance to the idler frequency that is most favorable for os-

cillation, as illustrated in Fig. 3. The signal component is

measured on the signal frequency scale, and the idler com-

ponent is measured on the idler frequency scale. The di-

rections of these scales are opposite. One increases from

left to right, and the other is reversed, increasing from

right to left. Therefore Aw_ and A_o, appear in opposite

directions in Fig. 3, even though they have the same sign.

The frequency displacements of the signal and the idler

from their respective resonance peaks are discussed in de-

tail in Subsection 2.C. It is useful to consider the depen-

dence of the OPO threshold on frequency mismatch and

phase mismatch first.

B. DRO Threshold with Imperfect Signal-Idler

Frequency Coincidence
Even an extremely small frequency mismatch can have

significant effects on frequency selection and threshold of
the DRO, particularly when cavity finesse is high. The

threshold relationship obtained here is the same as that

derived in the quantum-mechanical analysis by Graham

and Haken 9 and is similar to but more detailed than the

threshold equation given by Giordmaine and Miller. 2 The

result given here is in terms of classical electromagnetic

theory and is more easily applied to the tuning analysis
that follows. This threshold relationship is limited to

cavities with moderate-to-infinitesimal losses. The ef-

fect of phase and frequency mismatch on the thresholds of

DRO's with arbitrary cavity losses was discussed by Falk) 2

Falk's results are used to estimate the conditions under

which the threshold equation used here is appropriate.
The threshold for oscillation is obtained by setting the

parametric gain equal to the cavity losses. The electric

fields of the pump, the signal, and the idler waves are ex-

pressed in terms of complex amplitude and exponentials:

Ej(z, t) = Ih[Ej(z)exp i(kjz - %t) + c.c.],

where the subscript j indicates signal, idler, or pump, k

is the wave-vector magnitude, oJ is the angular frequency,

z is the coordinate in the direction of propagation, and t is

time. The coupled equations that describe parametric

amplification of monochromatic plane waves traveling in
the z direction are 7

dE,
dz iK, EpE,* exp(iAkz), (4a)

dE, iK, E,E,* exp(ihkz),
dz

(4b)

and

E_d
--_ = iKpE`E, exp(-iAkz),
dz

(4c)

where mks units are used and K, = eosd_ff/(n_c), u_ =

coid_ff/(nic), and Kp = _%d_ff/(n,c), with n_, n,, and np

the respective refractive indices for the signal, the idler,

and the pump, c the velocity of light, and d_ff the effective

nonlinear-optical coefficient. The solution used here is

derived under the assumptions that at threshold pump de-

pletion is insignificant and that the respective changes in

signal and pump amplitudes, AE` and AE,, are small com-

pared with the amplitudes. Hence E` and E, are treated

as constants in calculating the changes, that is,

AE` = iK_EpEi*l sinc(Akl/2) (Sa)

and

hE, = iKiE, E,*I sinc(Akl/2). (5b)

The length of the nonlinear crystal is again given by l, and

the sinc function is defined by sinc x = sin(x)/x.

For the low-loss DRO's considered here, Eqs. (5) are ade-

quate for modeling the parametric gain. Other solutions

to Eqs. (4) include general monochromatic plane-wave so-

lutions _3 that permit both pump depletion and arbitrary

changes in E, and E, and somewhat more restrictive solu-

tions that involve no pump depletion but have arbitrarily

large changes in E8 and Eil _'7 A solution of the lattertype

was used _2 for threshold analysis of DRO's with arbitrary

strength =of resonance.

The parametric gain must compensate both for a de-

crease in amplitude and for the phase change that is due to

propagation in the cavity. The phasor diagram shown in

Fig. 5 helps to illustrate this discussion. After a round-

trip cavity transit the signal electric-field amplitude is re-

duced by a factor (1 - a_), and the phase is shifted by an

angle _b_. Similarly, the idler amplitude is reduced by

(1 - a,), and the phase is shifted by _b_. At threshold this

change is balanced by the increments of the electric field

AE, and hEi, added by the parametric interaction:

(1 - a,)exp(i$,)E, + hE, = E, (6a)
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Fig. 5. Phasor diagrams schematically show amplitude losses a,
and a_ and phase shifts _bs and 0, after one round-trip cavity
transit for the signal and the idler, respectively. At thresh-
old the increments of electric-field amplitude added by optical
parametric amplification, AE_ and hE,, must restore the origi-
nal fields.

and

(1 - ai)exp(iO,)Ei + AEi = E,. (6b)

Choosing time so that the pump amplitude is real,

Ep = [Epl, expressing the signal and idler amplitudes as

E, = IEs]exp(i_bs) and E_ = IE,lexp(i¢,), and applying the

conditions that as, ai, _bs, and 0i are all small, we can

write Eqs. (6) as

hE, = IE, l(a,2 + 0 _)1:2exp(i_b, - iT, ) (7a)

and

hEi = IE, l(a? + ¢,:)'_ exp(i(b, - i7,), (7b)

where _ = tan-1(O,/aA and "Yi = tan-I(Oi/ai).

Substituting Eqs. (7) into Eqs. (5) results in two equa-

tions for the complex arguments and two equations for

the magnitudes. The relationships for the complex

arguments,

¢, + _b_ = T, + _r/2 (8a)

and

_bs + _bi = Ti + 7r/2, (8b)

immediately yield Ts = T, for the stationary solution, or

O___= __/. (9)
a, ai

Note that Eqs. (8) are consistent with the result that the

sum of the signal and the idler phases is constant when

referenced to the phase of the pump for stable single-mode-

pair operation) °

The sum of the unpumped-cavity-round-trip phase

shifts,

0 = 0_ + O,, (10a)

is useful for the purpose of comparison with the results of

Ref. 12 and for conversion to frequency mismatch. When

Eqs. (9) and (10a) are combined, the individual phase

shifts can be expressed in terms of the sum by

as

Os - 4, (lOb)
as + ai

and

ai

4q - _b. (10c)
a, + ai

The threshold equation is obtained by taking the prod-

uct of the two equations for the magnitudes that are ob-

tained when Eqs. (7) are substituted into Eqs. (5), with the

result that

[(a, 2 + _b,2)(ai 2 + _bi2)]u2 = K,K, Ep2I 2 sinc2(Akl/2)

= F2l 2 sinc2(Ak//2). (11)

The quantity F 2 is the parametric gain for perfect phase

matching, and it is proportional to the pump intensity]

With Eqs. (10b) and (10c), the threshold relationship given

by Eq. (11) can be written in the form

sinc2(Akl/2) 1 + (a_ • (12)

Figure 6 shows the DRO threshold parameter F212 as a

function of the phase-shift sum O as given by Eq. (12) for

two sets of cavity losses a_ = a, = 0.0087 and as = a_ =

0.0033, corresponding to finesse values _ = 360 and

= 960 of the DRO's used in the experimental measure-

ments. The shape of the threshold curve does not change

significantly, but the minimum value is translated toward

zero as the losses decrease. The width of the threshold

curves, defined as the region over which threshold is less

than twice the minimum value, therefore decreases as

cavity losses decrease.

In the application of Eq. (12) thresholds are expressed in

terms of cavity finesse because it is easier to measure the

ratio of resonance width to spacing than it is to measure

losses directly. A comparison of the above analysis with

2x 10-4

10-4_
%

"_ ..... Y= 36/

-0.02 -0.01 0 0.01

(radians)

0.02

Fig. 6. Comparison of thresholds for DRO's with differing cavity
finesses. Thresholds are calculated as a function of the sum of

the cavity-round-trip phase shifts _b with Eq. (12) for two DRO's
with cavity finesse _ = _, = 360 and 5;, = _, = 960. The
shape of the curve does not change, hut the width, defined as the
region over which threshold is less than twice its minimum value,
decreases for higher finesse.
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that of a parallel-plate interferomete& 4 or of optical cavi-

ties in general 15 shows that the amplitude loss coefficients

a_ and a, are related to the cavity finesse at signal and

idler frequencies _ and _,, respectively, by

ff;s _" _r/a_, ff;i =rr/ai. (13)

It is also more convenient to use frequency mismatch than

phase shift. The components of the frequency mismatch

are related to the phase shifts by

a_'_ _i_,
5w_ = --, h_oi = --' (14)

2zr 27r

When Eqs. (3), (10), and (12)-(14) are combined, the

threshold equation becomes

if;, ff:s si_c2(Akl/2) 1 + \_i 8o_ + ff;_aoJi] J

The threshold relationship given by Eq. (12) or (15)

agrees with other threshold expressions under appropri-

ate conditions. This result was obtained with a first-

order plane-wave approximation for parametric gain. In

the case of perfect phase matching, Ak = 0, and no fre-

quency mismatch, Aw = 0, these equations reduce to

F2l 2 = a,ai, which is the result obtained directly for this

case. 7 Focusing and coupling to cavity modes 16 must be

considered for quantitative threshold calculations. The

plane-wave derivation of threshold is adequate for the

analysis of tuning when it is necessary to know only the

relative dependence of threshold on Ak and A¢o.

There is also agreement with the central result of Falk's

analysis _ in the limit of high cavity finesse, that is,

a, << 1 and a, << 1. Rewritten in the notation used

here, Falk's Eq. (9) becomes

F:/2 B sin[2 tan _(C +sin_bcos_)-_b] 1

sin[tan-1 (C +sin$cos_ )] sinc2(_)sinc2 (-_) '

(16)

where, defining R_ = 1 - a, and R, = 1 - a,

R,(1 - R_ 2)
B- , C-

Ri 2 - R_ 2

R, 1 - Ri 2

R_ 1-R 2

Equation (16) is a more accurate approximation of the

DRO threshold applicable for arbitrary cavity loss. How-

ever, it is unwieldy and must be evaluated as a limit when

= 0 or when a_ = a,. Evaluation of Eq. (12) yields

threshold values that differ from those obtained from

Eq. (16) by approximately the fraction (a_a,) _2. There is

a fortuitous partial compensation for this disparity in

the approximation for finesse given in Eqs. (13). For

_:, = _, = 5, the difference between Eqs. (15) and (16) is

less than 13% at the frequency mismatch for which

threshold is twice its minimum value, and the difference

decreases with decreasing frequency mismatch. For

g_, = i_ = 10, the difference is 4% at twice minimum

threshold, and the agreement again improves as minimum

threshold is approached.

Equation (12) or (15) could be used directly to determine

the mode pair with the lowest threshold for oscillation. It

is more convenient, however, to restrict the possible mode

pairs on which oscillation may take place to a small num-

ber, based on frequency mismatch and wave-vector mis-

match considerations. This is done in Subsection 2.C,

where it is shown that there are three mode pairs in the

phase-matching bandwidth for which the frequency mis-

match is a minimum. Which of these three mode pairs

has the lowest threshold depends on the respective values

of 5k, hw, and the cavity finesse.

C. Frequency Selection in the DR(}

The selection of signal and idler frequencies in a cw DRO

operating on a single mode pair is determined by two con-

ditions: the conservation of energy stated in Eq. (1) and

the minimum threshold for oscillation. An approxima-

tion for the threshold condition was given in Eq. (15).

The conservation-of-energy condition becomes implicit in

the analysis of the condition of minimum threshold. In

this analysis it is convenient to follow the approach used

by Boyd and Ashkin 3 and to define the signal and the idler

axial mode numbers

and

m_ = 2lnJA, = ln,w,/(rrc) (17a)

m, = 2lni/;q = ln,wJOrc), (17b)

which are continuous variables that take on integer values

at cavity resonances. The free-space wavelengths of the

signal and the idler are given by a, and &, respectively,

and 2ln_ and 2ln, are the respective optical lengths for a

round-trip cavity transit. The free spectral ranges or

mode spacings of the signal-idler resonances, tioJ_ and _w,,

respectively, are the frequency changes that change the

mode numbers m, and m, by one; that is, 4

Om_ l( On_Ow, - n_ + w,_-_] = 8w, -1 (18a)

and

Ore, l [ On,
-- _ni q- wi-_wt] = 8toi -1. (18b)Otoi _e

The sum of the mode numbers

m = m_ + mi, (19)

which is also a continuous variable, is useful for the de-

scription of cluster effects. A signal frequency and an

idler frequency that satisfy Eq. (1) and for which m is an

integer compose a cluster frequency pair. In general, cav-

ity resonances are not located precisely at the cluster fre-

quencies. Only the sum m, + m, must be an integer at

the cluster frequencies; the individual mode numbers in

general differ from integers by amounts equal i n maKni-

tude but opposite in sign. The cavity resonance pairs

that most closely satisfy the conservation-of-energy condi-
tion and therefore that are most favorable for oscillation

are also the resonances for which m is most nearly an in-

teger. Equivalently, oscillation frequencies of a DRO are
displaced from a frequency pair at which m is an integer

t

w
l

w

E

!
E

R

m
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X..../

by no more than one half of the respective axial mode

spacings, whereas there are typically hundreds of modes

between adjacent signal or idler cluster frequencies at

which m is an integer.

Two further quantities that are useful for the descrip-

tion of the mode hops and cluster jumps of DRO tuning,

Am and hm_, are obtained by subtracting the integer

nearest the mode number from the mode number:

and

Am = m - ROUND(m) (20a)

Am, = m_ - ROUND(ms). (20b)

These quantities are used in the calculation of oscillation

frequencies and tuning-variable tolerances.

At optimum operating conditions, the quantities Ak,

Am, and Am, will all be zero, indicating perfect phase

matching and simultaneous cavity resonances at the de-

sired signal and idler frequencies. Adjustment of three

independent parameters is necessary in order to reach

this condition. The discussion presented here is given in

general terms with quantities hk, m, and m, and in

specific terms of the tuning or control parameters that

are used in the experimental observations. The experi-

mental observations use temperature T and applied poten-

tial V as adjustable parameters to control the output signal

frequency 02,. Pump frequency cop is used as the required

third adjustable parameter for the calculations. Simple

Taylor expansions for Ak, m, and m8 were found to be ade-

quate for modeling the observed frequency tuning:

(oAkI 1/o' k = - /W"-_/ (02. - 02,,o)2
Ak \_/_p(w, 02,.0) + _ \ 002, ]_,

(OAk t (cop OAk
+ -- - 02p,o) + -_(T - To)\ OWp /_,

OAk V
+ -_ + Ak0, (21)

()Om (02_- _o_.o)+ _ _o,o?L/02, - ,o_.o)_rn = _ Wp

Orn Orn+ (o,-o ,o)+-:- +too,
\Oa)pl_ 8

(22)

and

Om_ 02_ 1 02msm. = 0%-.( - 02.,o)+ -

Om_ Om_

+ --_-(T - To) + -_Y + m_,0. (23)

A second-order derivative is used for signal frequency be-

cause the first-order derivatives (Ohk/O02_)_p and (Ohm/

002,)_ become zero at degeneracy, and dispersion of

0m_/002_ is essential to the analysis.

The notation of a partial derivative in parentheses with

a parameter subscript to the right-hand parenthesis indi-

cates that the parameter of the subscript is held constant

for the differentiation. The conservation-of-energy con-

dition is introduced through this device. Consider a

function that is dependent on the signal, the idler, and the

pump frequencies f = f(02_, 02,, cap), and require that the

conservation-of-energy condition 02, + 02, = cop hold.

Differentiation with respect to 02,, with 02p held constant,

requires that as 02, is increased 02, must decrease, or

_p 002s 0o9 i

and, similarly,

. .
,_, O¢Op 002i

The derivatives used in Eqs. (21)-(23) are expanded in

Table 1. The differentiation is straightforward and can

be verified by inspection of Eqs. (2), (17), and (19).

I. Phase-Matching Curve and Cluster Curves

A number of equations considered below are identical ex-

cept for the exchange of the tuning variables. An econ-

omy of notation is possible through the use of a general

tuning parameter _, which is T, V, or 02p in the specific

example or, more generally, is any single parameter used

to tune a DRO. A phase-matching curve as used here

gives the signal frequency for which hk = 0 as a function

of the tuning parameter _ and is denoted by o2,.eM(_).

This curve is obtained from Eq. (21) or from a similar

Table 1. Derivatives Used to Calculate Tuning
of a Monolithic DRO

o_2m._ _/ (2°3n_s c_2ns)

Om. ho. On. w,n. Ol

OT _rc OT _'c OT

Om. _o_( O1 l On_lOV _-e n,'-_ + 8V /

(O2m I /[2(8n. On, I O'n. O'n.]
\0_o.2].. 7rct \ow. + a,od + ,o.:-_oo_.+ oo_,]

,( on,,=- ni + _oi--Owi]
_s TgC

am 1 [ On. On._ 1 Ol

OT rcc_°J'-_ + o_i-_) + --(w.n. +•re _'_')_

Om n,w_ + n,¢oi Ol l [ _n, Oni_

-- = + ¢oi"_)OV rrc aV _c __°'--'_+

CoAk I ( On, On,_ / rr(Orn)= ni -- n, + o)i-- - w.--! /c = -

(:,k) _ I
o,o?)o, = t Iooo?]o.

oAk I =(n,- oo On, 0_o,_Owp/_. ni + Paalp --O)i-_-_]

( 9,_k 0% Jni
"_e )ws = ne-ni + 02e-- -c°i--ame c902,

oAk _ cop Onp ¢o, On, o), Oni
aV c OV c aV c oV
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equation by setting the other adjustable parameters to

fixed values and setting Ak = 0. The cluster curves

_o_,cl(_) give the signal cluster frequencies as a function of

the tuning parameter _. The cluster curves can be ob-

tained from Eq. (22) or from a similar equation by setting

m to integer values and again setting the other adjustable

parameters to fixed values. For type-I phase matching,

the phase-matching curve is a parabolalike curve, as

shown in Fig. 1, and the cluster curves are a family of

parabolalike curves. The oscillating frequencies are clos-

est to the cluster curves near the points where the cluster

curves intersect the phase-matching curve.

The signal frequency separation of adjacent clusters 12_

can be obtained from the second-order approximation

Am(cluster) = +-1 = (am) as. 1 [ O2m \ 2- ÷ (24)
Away from degeneracy the first-order term dominates,

and Eq. (24) is approximated by

(25)

in agreement with Ref. 4. Phase-matching limitations

result in a gain bandwidth with half-maximum values

at the frequencies for which Ak = _+0.886_r/l -- +__r/l

and a corresponding signal frequency full width at half-

maximum of

\ &o_/,_ I
(26)

In the specific case of the monolithic DRO, for which

derivatives are given in Table 1, _r/l(am/aw,)_ = -(OAk/

&o_)_ and 5w_(Gain FWHM) = 212s. Since the fre-

quency separation of the clusters is approximately one

half of the parametric gain bandwidth, there are two or

three clusters within the gain bandwidth. This is true

for any DRO in which the nonlinear crystal is the only

dispersive component and the crystal is traversed twice in

each round-trip cavity transit but has parametric gain in

only one direction.

2. Oscillation Frequencies

The oscillation frequencies are determined by phase

matching, the center frequencies of the signal and the

idler cavity resonances, the frequency mismatch of the

resonances, the finesse values of the resonances, and the

axial mode spacings. To model experimental observa-

tions, we calculate the frequencies of the parametric oscil-

lation by the following procedure. First the signal

frequency for phase matching _,pM is found for specified

tuning parameters with the condition Ak = O. Next the

signal cluster frequency oJ_.c, that is closest to o)s,pM is

found with the condition Am = O. If the DRO cavity has

only moderate or low finesse and if the precise oscillating

frequency and mode hops are not of concern, these two

steps are all that are required. The extra resolution of

frequency tuning can be obtained by using the value of

hm_ at the cluster frequency eo_,cF This value is called

hm_,cl to indicate that it is calculated at the cluster fre-

quency eo_,cl for the specified tuning conditions.

The procedure for determining the fine details of tun-

ing is illustrated in Fig. 7. The signal cluster frequency

_O_,cl, obtained by the steps described above, is a reference

point from which to start. The center of the nearest

signal resonance is displaced from eo_,cl by frequency

-Am_,c_8OJ_, where 8o_ is the signal axial mode frequency

separation. The center of the nearest idler resonance is

displaced by -hmi,cl8w, from the complementary idler

cluster frequency oJ_,c_ -- _% - (O_,cl, where 8oJ_ is the idler

mode frequency separation and wp is the pump frequency.

Since oJ_,c_ is a cluster frequency with Am = 0, then

Ami,cl = -hm,,cl, which permits the frequency mismatch

of the signal-idler mode pair to be expressed as

AoJ = Am,,c,(_o), - ao_).

Recall that the frequency mismatch is the shift in fre-

quency of either the signal or the idler resonance that is

necessary in order to bring the resonance pair into coinci-

dence to satisfy the conservation-of-energy condition.

The displacement of the signal oscillation frequency

_o_.o_¢ from the center of the signal cavity resonance is

Ao_, and the displacement of the idler oscillation fre-

quency wi,o_¢ from the center of the idler cavity resonance

is Ao_,. From the above definitions and conditions im-

posed on round-trip cavity phase shifts for a stationary

solution given in Eqs. (3), (10), (13), and (14), it follows that

and

Finally, the signal oscillation frequency is given by the

sum of the cluster frequency plus the frequency separa-

tion of the signal cavity resonance from the cluster fre-

quency plus the frequency shift from the center of the

0) i

¢°i,c£

ms._:.C£.._ }

03, Osc

_ -Am_,c_a% .]_ _o_
i _ Am

i
l

,!

_- Am sc£&Oi - Am i

It}i, Osc

COs

Fig. 7. Signal-idler resonance diagram similar to Fig. 3, ex-
panded in detail to show the relationships between quantities.
The signal and the idler cavity resonances on which oscillation
occurs are displaced from the respective cluster frequencies o_,,c_
and wi.cl for the general case of nonzero frequency mismatch.
The DRO oscillating frequencies o_,.o_ and o),.o,¢ divide the fre-
quency mismatch h_ into the components ho_, and hwi.
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signal cavity resonance, that is,

ws, o,¢ = _o_,c_ - Am_,c_&O, + AoJs

• t_8_,(_ + _)
= ws,cl - ams CI _------ "_" (29)

Equations (27) and (28a) are used to obtain the second

step of Eq. (29).

The rate of frequency change associated with a general

tuning parameter _ could be obtained by direct differen-

tiation of Eq. (29) or more simply by considering the tun-

ing rates of the cavity resonances. The tuning rate for the

frequency of the signal mode is -8ws(Om_/O_), and that for

the frequency of the idler is -6w_(OmJO_). The tuning

rates of the cavity resonances are combined to yield the

rate of change of the frequency mismatch,

Oho> Om_ Om_ Om_ Om

The tuning rate of the signal oscillation frequency is the

sum of the tuning rate of the signal resonance plus the

fraction 8oJ_,/(_w_ + 8_,_) of Ohoj/O_, that is,

,

This tuning is limited to a small range by mode hops or

increased cavity losses as the oscillation is pulled off the

peaks of the cavity resonances. On a broader scale, tun-

ing progresses along a cluster curve in a series of mode

hops. If finesse is high, it is possible that the oscillation

jumps back and forth between adjacent cluster curves and

also hops from one mode pair to the next along each of the

cluster curves. The analysis of cluster jumps requires

that the mode-hop structures on the two or three cluster

curves that are closest to phase matching be compared in

order to determine which cluster curve provides condi-

tions most favorable for oscillation.

The tuning rates in the regions between mode hops and

cluster jumps, which are described by Eq. (30), are strongly

dependent on the relative values of finesse of the signal

and the idler cavity resonances. Some caution, however,

is required in the use of Eq. (30). For example, the calcu-

lation of Oo>_,o_¢/OV and Oo_,o_/OT for DRO's with nearly

equal signal and idler finesses involves the small differ-

ence of two quantities. In such situations it is important

that the terms on the right-hand side of Eq. (30) be evalu-

ated accurately for the specified operating conditions.

3. Tuning Limits and Mode Hops

Mode hops are periodic along the cluster curves, occurring

every time m_,c_ changes by one. Recall that m_,c_ is the

value of m_ on the cluster curve for which Am = O. The

change of the tuning parameter h_Ho,_p_¢i.g that corre-

sponds to a mode hop is a quantity that is easily measured

experimentally. Since a mode hop corresponds to a

change of one in m_,c_, it follows that the tuning parameter

change that corresponds to the mode-hop spacing is

__ I1I
A_H°P spacing \ O_ / [

(31)

In the evaluation of Om_,c,/O_ it is helpful to use the
derivative

8w_Swi Om
= (32)

The first step simply states that the cluster frequency w_,c_

must change with the tuning parameter _ in such a way

that m does not change, and the second step is accom-

plished by using Eqs. (18) and (19). It is possible to ex-

pand the derivative Om_z_/o_ by using first the chain rule

of differentiation and then Eqs. (18) and (32) to obtain

' - + ' - (33)

Another useful parameter is the maximum frequency
shift from the cluster curve that can be achieved without

a mode hop (ws.Ho, -- _,,c_). This maximum is obtained

directly when the extreme values of Am,,c_ = ±1/2 are in-

serted into Eq. (29), yielding

1 t}_(_ + _)

O)s'H°P -- OJs'C1 = q-- 2 8o_, _ + 8o_ _
(34)

Cavity finesse can also limit the single-parameter tun-

ing range. It follows from Eq. (15) that threshold is

double its minimum value when the frequency mismatch

Aw reaches the value

Aw=±

The corresponding value of hm_,c_ is obtained from

Eq. (27). On substitution into Eq. (29) the maximum dis-

placement of signal oscillation frequency from the cluster

frequency allowed by cavity finesse is found to be

_ + _, 8_8_,
(.Os, Fin -- O)s, CI = ±-- (35)

If finesse is large the frequency displacement allowed by

Eq. (35) becomes significantly smaller than the frequency

displacement required for a mode hop described by

Eq. (34). In this case parametric oscillation on the cluster

curve closest to phase matching ceases in a region near

the mode hop. It is then possible for the parametric oscil-

lation frequencies to jump to an adjacent cluster curve

that is still within the phase-matching gain bandwidth if a

favorable coincidence of signal and idler resonances exists

on that cluster curve.

Plotting the mode-hop frequency limits o_,_o_ and the

finesse frequency limits o>.,Fi, in addition to the cluster

curve provides additional information concerning the fine

detail of tuning. On a broader scale, it is informative to

display curves defining the phase-matching gain band-

width along with the phase-matching curve. It may also

be useful to display more than one cluster curve near the

phase-matching curve.

An attempt was made to keep the results of this section

general, For application to the specific case of a mono-
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Table 2. Derivatives used to Model Tuning of

MgO: LiNbOs Monolithic DRO's a

°rn----2_= 3.05 x 10 -11 (rad/sec) -1
c9_o s

(0 1:0
_p

00)s /_p

02m_ = 1.10 x 10 -27 (tad/see) -2
O_s 2

O_o2]_p = 2.20 x (rad/see) -2

02_k / 10_25 rad/m
0_o2 ]_, = - 5.53 x (rad/sec)2

0ms
_-0

awp

(°T_mp)_, = 3'°5 x 10-n (rad/sec) -1

rad/m10

Oeopl_ rad/sec

Om___,= 1.02oc_ 1
aT

am
--= 2.03oc -1
aT

aAk rad/m
--= 749-
aT °C

am, -1.81 x 10 6 m/V

OV t

am -3.63 x 10 s m/V

aV t

oak 3.61 x 10 -_ rad/m

aV t V/m

_The parameter t is the effective thickness of the crystal in meters; l =
0.0125 m, _p,o = 3.54070 × 10Is rad/sec, oJ,.0 = 1.77035 × 101_ rad/sec,
To = 107.04°C, V0 = 0.

lithic DRO tuned by temPerature, applied potential, and

pump frequency, the appropriate variables and derivatives

from Table 1 are directly substituted for the terms involv-

ing the general tuning parameter _. Evaluation of the
derivatives for the case of monolithic DRO's made from

MgO:LiNbO3 with propagation in the x direction and

with an electric field applied in the y direction is dis-

cussed in Appendix A. Temperature-dependent disper-

sion, thermal expansion, the electro-optic effect, and the

piezoelectric effect of the nonlinear-optical material are
used in the evaluation. Results of this evaluation for ex-

perimental conditions described in Section 3 are given

in Table 2.

3. EXPERIMENTAL OBSERVATIONS

AND MODELING

A. Experimental Conditions
Two monolithic DRO's, which were described previ-

ously, 17'18 were used in the experimental observations.

One DRO had lower finesse and had to be pulse-pumped in
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order to achieve the higher threshold power needed for

parametric oscillation. The higher-finesse DRO operated

above threshold with the available continuous pumping.

The pump source was a diode-laser-pumped nenplanar _ =

ring oscillator, _9'2° constructed of neodymium-doped

yttrium aluminum garnet (Nd:YAG) with the 1064-nm

laser output converted to 532 nm by externally resonant

second-harmonic generation. 2_ Approximately 30 mW of

cw pump radiation was generated. The laser operated in

a single longitudinal and a single transverse mode. For

cw operation of the laser, fundamental frequency stability

was typically 10 kHz over short periods of time. _'23 This

value was doubled at the second harmonic. Higher peak

power at similar average power was obtained by driving

the laser into relaxation oscillations by 10% amplitude

modulation of the diode-laser output at 320 kHz. Good

frequency stability and high optical quality of the pump

radiation, such as that achieved with the diode-laser-

pumped solid-state laser, are important for obtaining sta- E

ble DRO performance.

Both monolithic DRO's were operated with a ring-

resonator configuration. They were constructed from

5% magnesium-oxide-doped lithium niobate (MgO:

LiNbO_).24'25 Each of these monolithic resonators was

12.5 mm long, with the crystal x axis in the long direction.

A ring path in these resonators was formed by reflections
from two multilayer dielectric coated surfaces with 10-mm

radii of curvature and a totally internally reflecting sur-

face. The centers of curvature of the spherical surfaces

were on a line parallel to and 180 $zm inside the flat to-

tally internally reflecting surface. A drawing of the

monolithic DRO's is shown in Fig. 8. The 532-nm pump

beam was mode matched for collinear propagation on the

segment of the ring path parallel to the crystal x axis.

The pump beam with extraordinary polarization did not

follow the closed path of the signal and the idler waves "_

with ordinary polarization because of bireflection.

Metal coatings for electric-field tuning were applied

to the crystal surfaces perpendicular to the y axis. The

thickness of the crystals between the electrodes was

2.2 mm. The finesse of both DRO's at 1.064 _m was

measured with the Nd:YAG laser output directly, without

second-harmonic generation. Electric-field tuning was

used to scan the resonators through a free spectral range,

and transmission through the resonators gave a measure

of resonance width relative to the mode spacing. One

DRO had a finesse of 360, and the other had finesse of

960. The lower-finesse device had an experimentally ob-

served threshold for cw parametric oscillation of 35 mW,

and the higher-finesse DRO had a threshold of 12 mW.

The pump source could produce approximately 30 mW of

12.5 mm ............ -:_ 2.2 mm

...............=:
............................

Fig. 8. DRO geometry used for experimental observations. --
Z
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Fig. 9. Schematic representation of the setup used for DRO tun-
ing measurements.

cw radiation at 532 nm. The higher-threshold OPO was

pumped by 532-nm second harmonic, which consisted of

400-nsec pulses with 230-mW peak power at a 320-kHz

repetition rate.

The output of the DRO's was tuned by temperature and

electric field. Noncritical phase matching in MgO:LiNbO3

was achieved for degeneracy at 107°C, and as temperature

was increased the signal and the idler wavelengths sepa-

rated from the 1.064-/zm degeneracy point. For the

tuning studies the potential applied to the crystal was

repetitively ramped at fixed temperature. Output wave-

length measurements were repeated at incrementally

changed temperatures. An f/10, 1-m grating monochro-

mator with a 600-1ine/mm grating was used for wave-

length measurement. The DRO output directed into the

monochromator consisted of a series of pulses; these

pulses resulted either from the pulse pumping or from the

mode hops produced by the ramped voltage with continu-

ous pumping. The radiation transmitted by the mono-

chromator usually consisted of a few pulses in a narrow

spectral band that could be correlated with the potential

applied to the DRO electrodes. A schematic representa-

tion of the experimental setup is shown in Fig. 9.

of temperature and in the temperature dependence of the

dispersion relationships that make this necessary. The

temperature adjustment was accomplished by shifting the

data a fraction of I°C but could have equally well been

done by changing the parameter Ako in Eq. (21). Another

fitting parameter is required because the optical lengths

of the DRO's are not precisely known. This fit is accom-

plished by changing the value of m0 in Eq. (22) and has the

effect of adjusting the placement of the cluster curves.

The thickness of the DRO crystals is also used as a fitting

parameter. The electrodes do not completely cover the

surfaces, and fringing effects are not considered. In-

stead, it is assumed that there is a uniform electric field

in the y direction given by Ey = V/t, where V is the applied

potential and t is an effective thickness. Adjusting the

thickness has the effect of changing the slopes of the clus-

ter curves and voltage-tuned phase-matching curve. It is

interesting to note that the piezoelectric effect, in addi-

tion to the electro-optic effect, is needed to model the ob-

served tuning. When only the electro-optic effect is used,

the calculated voltage-tuned cluster curves are parallel to

the voltage-tuned phase-matching curve. A fourth fitting

parameter not used here is the constant m,,0 in Eq. (23).

Adjustment of m,,0 would allow for different phase shifts

at the mirror surfaces for the signal and the idler and the

possibility of different cavity lengths2 Adjustment of m,.0

would change the calculated position of the mode hops.

The observed and fitted tuning curves for the DRO's are

shown in Figs. 11 and 12. The theory is most easily ex-

pressed in terms of frequency. Frequency therefore is

used as the primary ordinate scale in these graphs, and

wavelength is included as a secondary scale for reference.

B. Cluster Tuning

The tuning of the high-finesse DRO involved spectral

jumps back and forth between cluster curves as well as

mode hops along the cluster curves. This behavior is il-

lustrated in Fig. 10, where DRO output is displayed for a

small voltage range at a constant temperature. In this

figure output is resolved on three separate cluster curves.

The monochromator slits were opened to provide a 5-nm

transmission width, one sufficient to resolve the individual

clusters while transmitting a number of mode hops. The

central cluster curve with signal wavelength near 1043 nm

dominated. Two other cluster curves fit within the phase-

matching gain bandwidth, and output on these curves was

observed near 1053 and 1037 nm. Competition with the

central cluster curve, which depletes the pump wave, is

evident in the two cluster curves to either side.

Three adjustable parameters were used to fit Eqs. (21)

and (22) to the observations. A temperature-offset cor-

rection is used to fit the calculated phase-matching curve.

There are inaccuracies in both the absolute measurement

_- .... 40 V -----_

Fig. 10. Oscillograms of cw-pumped DRO output, showing simul-
taneous output on three cluster curves. The signal displayed
is that produced by a photodiode placed after a monochromator
with slits adjusted for a 5-nm bandpass. Each of the oscillo-

grams corresponds to the same portion of the ramped voltage
applied to the DRO. The change in applied potential is indicated.
The oscillograms differ only in the wavelength setting of the
monochromator, indicated for the individual traces. The output
on the central cluster dominates and is so strong that the oscillo-

scope trace does not return to the baseline.
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Fig. 11. Observed and calculated tuning for the pulsed-pumped

DRO with finesse Of 360. The open vertical bars in (a) show the

extent of tuning observed as applied potential was ramped from 0

to 1150 V at a constant temperature. The solid curves behind
the vertical bars are calculated phase-matching curves for the ex-

treme voltages. Voltage tuning for three temperatures is shown

in (b)-(d), where the hold central curves are the calculated phase-

matching curves and the dashed curves indicate the limits of the

phase-matching bandwidth. The dotted curves are calculated

CIuster curves, and the filled circles are observed operating points

of the DRO. This DRO, which has only moderate finesse, exhibits

few jumps between cluster curves as the voltage is ramped. The

data are measurements of the applied potential for a limited

sampling of output frequencies and do not represent individual

mode hops.
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The temperature-tuned phase-matching curves are shown

in Figs. ll(a) and 12(a). At each temperature setting a

range of output wavelengths is obtained by voltage tun-

ing. In most cases the observed tuning ranges cover the

space between and extend slightly beyond the calculated

temperature-dependent tuning curves for the extreme

voltages. Voltage was ramped from 0 to 1150 V, and

when the crystal was reversed, from 0 to -1150 V. Fig-

ures ll(b)-ll(d) and 12(b)-12(d) show the voltage tuning

at selected fixed temperatures. The data are the volt-

ages at which output was observed at selected frequen-

cies. Calculated phase-matching curves, gain-bandwidth

curves, and cluster curves are shown for comparison. In

some instances the data are located in lines parallel to the

calculated cluster curves but not on the cluster curves.

This most likely is caused by inaccuracy in temperature

measurement, and coincidence could be obtained by choos-

ing a different temperature calibration for each setting.

In practice DRO tuning may provide an accurate measure-

ment of its temperature. The DRO sensitivity to tempera-

ture will become more apparent below when the details of

tuning are discussed.

Figures 11 and 12 appear to be similar in a cursory ex-

amination; however, one aspect of tuning's dependence on

finesse is illustrated. The lower-finesse DRO, with the

tuning shown in Fig. 11, usually oscillates on the single

cluster curve nearest the phase-matching curve. Some-

times the oscillation jumps back and forth between two

cluster curves when they are nearly equally distant from

phase matching. The output of the higher-finesse DRO

with the tuning shown in Fig. 12 jumps between two or

three cluster curves. This is in agreement with theoreti-

cal predictions that show the tuning limit imposed on the

= 960 DRO by the resonance widths; that is, the finesse

limit of tuning is reached before the mode-hop limit of

tuning for most conditions encountered.

The cluster curves are also dependent on temperature.

The data displayed in Fig. 12 are interpreted to show tem-

perature tuning at constant voltage in Fig. 13. Here the

data points are either interpolated from measurements of

cluster tuning with voltages both higher and lower than

the selected voltage or extrapolated from measurements

of the cluster curves that nearly reach the selected volt-

age. The calculated phase matching, gain bandwidth,

and cluster curves are again in reasonable agreement

with observation.

C. Axial Mode-Hop Tuning
There is good agreement between observation and the cal-

culated voltage change required to produce a mode hop.

Observations similar to those illustrated in Fig. 10 were

performed under various conditions. The results are

shown in Fig. 14, in which hVHop_,g is displayed as a

function of detuning from degeneracy. The calculated

line is obtained from Eqs. (31) and (33). The tuning

parameter is voltage, and it is necessary to substitute V

for _ in the equations and further to substitute the appro-

priate values from Table 2, and to evaluate the derivative

(Om/OoJ_)_p as a function of signal frequency. The approxi-

mations given in Section 4 by relations (37) and (38) also

work well in the evaluation of Eq. (31).

Calculations of axial-mode-hop tuning along cluster

curves were performed for conditions that would approxi-

mate those used to produce Fig. 10. The same fitting

parameters were used as in Figs. 12 and 13. An operat-

ing temperature and center voltage were chosen to give

three cluster curves centered on phase matching at the

observed operating frequencies. This was done by ma-

nipulation and solution of Eqs. (21) and (22). Calculated

phase-matching, gain-bandwidth, and cluster curves in

this region are shown in Fig. 15(a). Calculated tuning

along the three cluster curves with the detail of mode hops

is shown in Figs. 15(b)-15(d). These tuning curves were

obtained by using Eq. (22) to calculate the cluster signal

frequency oJ,,ci, Eq. (23) to calculate the signal mode num-

ber m,z_ at the cluster frequency, and Eq. (29) to calculate

the signal frequency of the oscillation. The mode-hop

frequency limits given by Eq. (34) and the finesse fre-

quency limits given by Eq. (35) are also shown.

When the oscillating signal frequency differs from the

cluster signal frequency by more than the mode-hop limit,

it is advantageous for the oscillation to shift to another

signal-idler resonance pair. When the oscillating fre-

quency excursion from the cluster frequency reaches the

finesse limit, the threshold for parametric oscillation is

double the value that it had when the oscillation frequen-

cies coincided with the cluster frequencies, and the

threshold increases for greater excursions of the oscilla-

tion frequency from the cluster frequency. Figure 15

illustrates how cluster jumps can be interspersed with the

mode hops of a single cluster curve. For the calculation

presented in Fig. 15, the finesse limit of tuning is reached

before the mode-hop limit is reached on the central cluster

curve shown in Fig. 15(c). Parametric oscillation on the

central cluster curve usually dominates, because phase

matching is best there. When the finesse limit of the fre-

quency excursion from the cluster curve is reached, how-

ever, the parametric oscillation on the central cluster

curve decays, and it is possible to have oscillation build up

on an adjacent cluster curve before oscillation can build

up on the next mode pair of the central cluster curve.
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Fig. 13. Observed and calculated tuning for the cw-pumped DRO
as a function of temperature. The same tuning data that were
used in Fig. 12 are used here. A fixed voltage of -200 V was
chosen. For the cases in which oscillation on a cluster curve was

observed at voltages both higher and lower than this voltage, fre-
quencies were obtained by interpolation and are represented by
filled circles. For the cases in which cluster tuning came near
but did not reach this voltage, frequencies were obtained by ex-
trapolation and are represented by open circles. The dotted
curves are portions of the calculated temperature-dependent
cluster curves. The calculated phase-matching curve is the cen-
tral bold curve, and the dashed curves show the approximate
gain-bandwidth limits.
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Fig. 14. Mode-hop spacing in an applied potential as a function
of detuning from degeneracy. The dots are data points, and the
solid line is calculated from theory.

Notice that the mode-hop spacing that is measured by the

change in the tuning variable is different for the three

adjacent cluster curves of Fig. 15(b)-15(d). Also, the rela-

tive positions of the finesse and mode-hop limits change

with detuning from degeneracy.

These comparisons show quantitative agreement be-

tween observations and the tuning theory of Section 2.

The tuning theory describes the cluster tuning of the DRO

as well as the effects of cavity finesse on the cluster struc-

ture in the occurrence of cluster jumps. Also, the theory

is able to predict the observed spacing in the tuning vari-

able of axial mode hops on a microscopic scale of tun-

ing. This is done with temperature-dependent dispersion,

thermal expansion, and electro-optical and piezoelectric

effects. Only three fitting parameters are used: a tem-

perature calibration, which entailed the translation of a

temperature scale by a fraction of a degree Celsius, an

adjustment of cavity length I of less than one wavelength,

and the use of a effective crystal thickness that compen-

sated for the nonuniformity of the electric field inside the

crystal. With this agreement it is reasonable to consider

applying the theory to analysis of the DRO for optical fre-

quency synthesis. Specifically, the analysis addresses

conditions that are necessary to reproduce the coherence

of a frequency-stable pump with a small degree of tunabil-

ity at any frequency in the tuning range of the DRO.

4. FREQUENCY SYNTHESIS AND
TUNING-VARiABLE TOLERANCES

Parameter tolerances and continuous-frequency tuning

are topics that can be addressed with the theory presented

above. Knowledge of tolerances is imPortant for stable

DRO operation and for tuning to oscillation at specific fre-

quencies. Continuous-frequency tuning is of interest in

many applications. Fixed-frequency operation with reso-

lution finer than a mode hop may be required, or perhaps

truly continuous frequency coverage may be necessary.

The DRO output frequencies lie within the widths of cav-

ity resonances. The extent of continuous tuning depends

on several factors, including frequency shifts of the cavity

modes, the spectral range over which the conservation-of-

energy condition can be satisfied while oscillation is main-

tained within a selected mode pair, and the spectral range
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over which higher net parametric gain is not available on

another mode pair. Multiple-parameter tuning, in which

two or more parameters are synchronously changed, is

required for continuous tuning over the full free spectral

range of the oscillator. Single-parameter tuning will

provide frequency coverage over small regions that are

separated by the discrete mode hops.

It is easiest to think of tolerances for situations in which

only a single parameter is permitted to change. In prac-

tice there are advantages in dealing with parameter toler-

ances in pairs. For example, voltage and temperature

adjustments could be used to maintain stable oscillation at

a fixed frequency. It may not be possible to control tem-

perature to the precision that is required if voltage is

fixed, but the lack of adequate temperature control could

be offset by voltage control. Feedback techniques could

be used to adjust voltage in order to maintain stable oscil-

lation on a signal-idler mode pair even in the presence of

temperature fluctuations that by themselves would cause

mode hops. The change in voltage required for stable op-

eration could be used as an error signal that would in turn

be used to return the temperature to the desired value.

Simultaneous adjustment of three parameters could

also be used to tune the output frequency of the DRO. As

an example, consider a pump frequency that is ramped in

some specified way. The conditions required for stable

operation on a single signal-idler mode pair could be pro-

vided by feedback control of the potential applied for

electro-optic and piezoelectric tuning. The tolerance re-

quired for phase matching would be much less stringent

than that required for stable operation on a single signal-

idler mode pair; adequate phase matching could be main-

tained by temperature control, based on a functional

relationship that is dependent on the pump frequency

and voltage required for stable operation. With two-

parameter tuning frequency matching could be main-

tained, but it would not be possible to maintain optimum

phase matching.

A. Tuning-Variable Tolerances

The parameter tolerances for stable operation are deter-

mined by the more restrictive of two conditions. Mode

hops are avoided by operation within a range of adjust-

ment over which higher gain does not develop on another

signal-idler mode pair. The range of adjustment over

which oscillation can be maintained on a mode pair may

be limited to a smaller value by the resonance width or

equivalently by the DRO finesse. These tolerances are

closely related to the mode-hop spacing and spectral limits

of tuning that were discussed above, and they can be ob-

tained from detailed tuning curves such as those shown in

Fig. 15(b)-15(d) for voltage tuning. Detailed tuning

curves for temperature tuning and pump-frequency tun-

ing are shown in Figs. 16 and 17, respectively.

The conditions for the calculations displayed in Figs. 16

and 17 are the same as those used to produce Fig. 15(c).

These conditions are _ = _;, = 960 for a MgO:LiNbO3

DRO of length l = 1.25 cm, pumped at 564 THz (532 rim)

with signal frequency near 287 THz (1043 nm). Fitting

parameters used in these calculations, such as an effec-

tive thickness t = 0.277 cm and a length adjustment cor-

responding to a change in m of 0.42, are the same as those

required to fit the experimental data in Figs. 12 and 13.

These characteristics are carried forward to other calcu-

lations for the purpose of providing a specific example for

comparison.

The detailed tuning curves of Figs. 15-17 are similar in

many respects. The mode-hop and finesse limits of fre-

quency displacement from the cluster curve are indepen-

dent of the tuning parameter. In each of the figures the

slope of the continuous portion of tuning between mode

hops is much smaller than the slope of the cluster curve.

The slopes of the continuous portions of tuning are de-

pendent on the relative finesse of the signal and the idler

resonances. The case of equal finesse is shown in the cal-

culated tuning curves. The illustrated curves show that

voltage must be held within a tolerance of approximately

1 V, temperature within 0.0006°C, and pump frequency

within 7 MHz for stable operation in this example.

Analytic approximations for the parameter tolerances

for stable operation are not limited to a specific example.

The range over which a parameter can be changed with-

out causing a mode hop is obtained from the condition

hmszl = -+1/2. Recall that mszl is the value m, for a point

on the associated cluster curve, and the cluster curve is
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Fig. 16. Calculated detailed tuning as a function of temperature.
For this calculation temperature is adjusted while other parame-
ters are held constant at values that correspond to a point near
the center of Fig. 15(c). Here, also, the slope of the continuous
portions of the tuning curve are dependent on the relative values
of signal and idler finesse, and this slope is small compared with
the slope of the cluster curve.
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Fig. 17. Calculated detailed tuning as a function of pump fre-
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other parameters are held constant at values that correspond to
a point near the center of Fig. 15(c). For pump-frequency tun-
ing with equal signal and idler cavity finesse, the slope of the
continuous portions of the tuning curve is -0.5. Because of the
scale necessary to display the much greater slope of the cluster
curve, the continuous portions of the tuning curve appear to
be horizontal.
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Table 3. Calculated Single-Parameter
Continuous Tuning Rates and Parameter

Tolerances for Stable Operation of
the Finesse -- 960 DRO Pumped

at 563.6 THz with Signal Frequency 287.44 THz

Tuning
Parameter af_.o,c

A(Hop tol ..... A_Fin toI ......

V (Voltage) 72 kHz/V +-0.98 V +-0.80 V

T (Temperature) -124 MHz/°C +-0.00064°C -+0.00051°C

fp (Pump
Frequency) 0.499 Hz/Hz +-6.7 MHz +-5.4 MHz

a line that gives the values of signal frequency w, and a

tuning parameter _ for which Am = 0, with the other pa-

rameters held at fixed values. It follows that the tuning-

parameter tolerance is

÷!(°m'c'/-' (36)
A_Hoptol ..... --_ -- 2 \ a[ ]

The derivative in the above equation can be evaluated

with Eq. (33). An approximation of that equation for the

case of type-I phase matching is given by

am,,cl = 5wo am (37)
a_ 5w, - aw8 a_'

where _w0 is the mode spacing at degeneracy (w8 = wi =

wo = wJ2). The difference between the idler and the

signal mode spacing can also be expanded about degener-

acy by using Eqs. (18) to obtain

232ms
_oJ, - 3oJ, = 2t_oJ0 &o---_(oJs - oJ0). (38)

Equation (36) and relations (37) and (38) can be combined

to give the desired approximation for the mode-hop pa-

rameter tolerance, namely,

02ms )/3mh_Hoptol ...... = +-Sw0 aw-----_(w, - wo --_-" (39)

The adjustable parameter tolerance related to cavity fi-

nesse can be obtained from the cavity-round-trip phase-

shift sum for which the pumping threshold is twice its

minimum value. From Eqs. (12) and (13) this phase-shift

sum is

+ 1

Since 0 = 2_rAm, the parameter tolerance determined by

cavity finesse is

I/2(1/_, + V_)
A_Fin tol ...... _ *_ (41)

3m/a_

The parameter tolerance related to mode hops, given by

relation (39), is zero at degeneracy and increases linearly

with detuning from degeneracy. In practice, however, op-

eration precisely at degeneracy was stable for tens of min-

utes with no adjustments to the DRO. 1° The parameter

tolerance related to cavity finesse, given by relation (41),

remains approximately constant independent of detun-

ing from degeneracy as long as finesse remains constant.

Calculated tuning-variable tolerances are given in Table 3

for the MgO:LiNbO3 DRO for the conditions used to gen-

erate Figs. 15(c), 16, and 17.

B. Single-Parameter Tuning

The cavity resonances associated with the signal wave and

the idler wave can have significantly different finesse.

The oscillating frequencies of the DRO will align more

closely with the higher-finesse cavity resonance than

with the complementary resonance with lower finesse and

greater width. If the frequencies of the cavity resonances

change, the oscillation will follow the higher-finesse reso-

nance more closely, to the extent possible without a mode

hop or a cluster jump. If the pump frequency changes,

the frequency of the wave oscillating on the higher-finesse

cavity resonance will remain more nearly constant than
that of the wave oscillating on the lower-finesse resonance.

In this sense the higher-finesse resonance pulls the fre-

quencies of oscillation more strongly.

It has been noted by Smith 4 that the continuous tuning

of a DRO is relatively insensitive to tuning-parameter

changes that change the optical length of the DRO reso-
nator, but the signal frequency and the idler frequency

both display approximately one half of the change that

occurs in pump frequency. Single-parameter continuous

tuning is described by Eq. (30), which can be rewritten

with m = m, + rn, as
1

aoJ,,o,, _w,8_ [ am; _ _ am, 1

In the mathematical development used here, co, and oJp are

used as independent variables, with oJ, determined by

Eq. (1). Choosing pump frequency oJp as the variable

parameter _"requires the substitutions

am, (am, I am,

and

am,(am,) =0.
a_" _,a0Jp l _,

The signal and the idler mode spacings, tiw_ and aw_, will

differ by only a small amount, and if _, and i_i are nearly
equal, the tuning rate is aoJs.o_/awp _ 1/2. More gener-

ally, for differing values of finesse, the tuning rate is in

the range 0 < aw_.o_¢/awp < 1. Even though approxi-

mately half the pump frequency tuning will be reflected

in signal tuning, only a relatively small spectral range will
be covered before a mode hop is encountered. Calculated

single-parameter tuning rates for the special case of i_, =
_,, corresponding to the DRO's described in Section 3,

are given in Table 3. The partial derivative_needed in

this calculation were evaluated for o_.o_ = 287.44 THz
(1043 nm) and To = 107.51°C instead of being taken from

Table 2. As explained in Subsection 2.C.2, this procedure
is required for the evaluation of af,.o,¢/oV and af,,o_¢/aT,

which involve the small differences in two quantities, but
has little effect on the other values in the table.

V
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Table 4. Calculated Values for Two-Parameter Tuning of a Monolithic MgO:LiNbO3 DRO at
f, = 287.44 THz or A, = 1043 nm

df_ d_2 dAk

Adjustable Parameters Fixed Parameter d_l d_l d_t

_1 = fp, _2 = V T = 107.54°C 0.510 1.47 x 10 -7 V/Hz

_1 = fp, _2 = T V = -160 V 0.511 (-9.4 x 10-u)°C/Hz

_t = V, _2 = T fp = 563.6 THz -7.9 kHz/V (6.4 × 10-4)°C/V

2.26 × 10 -s (rad/m)/Hz
-6.7 x 10 -s (rad/m)/Hz

0.613 (rad/m)/V

C. Multiple-Parameter Tuning

It is possible to extend the continuous-tuning range by

synchronously adjusting two or three parameters. Ad-

justing two parameters simultaneously permits the condi-

tions Am = 0 and hms = 0 to be maintained, but hk will

change. Adjusting three parameters simultaneously per-

mits tuned parametric oscillation while Am, hms, and hk

all remain equal to zero for a specified mode pair, and

tuning is limited only by the extent that the parameters

can be changed.

Generalized tuning parameters with adjustable _1 and _2

and fixed _3 are used for the discussion of two-parameter

tuning. For the specific case treated here, any permuta-

tion of voltage, temperature, and pump frequency can be

used for these three parameters. The conditions Am -- 0

and Am, = 0 determine a relationship between _1 and _'2,

and use of this relationship permits cos and hk to be ex-

pressed as functions of _1. These relationships can be ob-

tained by first differentiating Eqs. (21)-(23) with respect

to _t, yielding

dm _ 0 = (am/ dto, 0m am d_2 (42a)

dm_ _ 0 - am, dw_ am, am______t_d_____2, (42b)
d_l aw_ d_l + a_--_-+ 0_2 d_l

and

dhk (OAk I dw_ OAk ahk d_2 (42c)

Only a small spectral region is being considered, and it is

unnecessary to consider second partial derivatives with

respect to signal frequency. The first partial derivatives,

however, must be evaluated for the operating conditions

that are being considered. A specific case for which this

consideration is important is frequency tuning for voltage

and temperature adjustment, which again involves a small

difference of terms. Equations (42a) and (42b) are solved

for doJ,/d_l and d_2/d_l. These values are substituted

into Eq. (42c) to yield a value for dAk/d_. Results are

calculated for three sets of tuning parameters and are

listed in Table 4. The conditions used for these calcula-

tions are the same as those used for Figs. 15-17 and

Table 3; the partial derivatives in Eqs. (42) again were

evaluated for _o,,o_ = 287.44 THz (1043 nm) and To =

107.51°C.

Two of the examples given in Table 4 are briefly noted.

The voltage-temperature tuning mentioned above is of in-

terest for operation at a fixed frequency. The rate of

change of the output frequency with applied potential

when the voltage and the temperature are changed simul-

taneously in order to maintain Am = 0 and Am, = 0 is

calculated to be -7.9 kHz/V. The magnitude of this

tuning rate is approximately 10 times smaller than the

single-parameter voltage tuning rate given in Table 3 and

significantly smaller than the 3.5-MHz/V tuning rate of

the cavity resonance. The reduced sensitivity is impor-

tant in stable-frequency operation of the DRO. Simulta-

neous pump-frequency and voltage tuning is useful for

continuous coverage of the spectral region between the

mode hops of single-parameter tuning. Calculated tun-

ing curves for this case are shown in Fig. 18. The same

conditions used for Figs. 15-17 apply again to Fig. 18.

Tuning is taken to the limits of hk = +-_r/l in the figure.

Two methods of three-parameter tuning are presented.

First a method is described for achieving oscillation at a

specified frequency while satisfying the conditions hk =

0, Am = 0, and Am, = 0. The description is in mathe-

matical terms but is analogous to what could be done

experimentally. The first step in this method is adjust-

ment of the temperature in order to achieve phase match-

ing for the specified frequency. This is just a matter of

changing the temperature to the value determined by

Eq. (21). Next, the pump frequency and the temperature

are adjusted simultaneously in order to maintain the hk =

0 phase-matching condition and to satisfy the condition

Am = 0. Numerically this is done by setting hk = 0 and

Am = 0 in Eqs. (21) and (22) and solving for T and wp

with V and eo, held constant. Next, three parameters are

adjusted simultaneously by solving Eqs. (21)-(23) for T,

oJp, and V with w, again held constant and hk, Am, and

Am, set to zero.

In practice this mathematical procedure would be

analogous to setting temperature to a value calculated for

phase matching and observing the location of the cluster

curve nearest the phase-matched signal frequency. Next,

the temperature and the pump frequency are adjusted
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simultaneously in order to move that cluster curve to in-

tersect the desired frequency at phase matching. At this

point oscillation is on the resonance nearest the specified

frequency. Finally the temperature, the pump frequency,

and the voltage are adjusted simultaneously in order to

bring the cavity resonance to the desired frequency while

coincidence of the signal and the idler modes and phase

matching is maintained.

The second method of three-parameter tuning concerns

a situation in which oscillation is achieved with optimum

phase matching and coincidence of the modes in satisfying

the conservation-of-energy condition. Continuous output

frequency tuning is possible over a limited range while op-

timum DRO operating conditions are maintained. One

parameter can be changed arbitrarily, but the other pa-

rameters must be changed in a prescribed manner. The

prescription for this change is again obtained by differen-

tiating Eqs. (21)-(23) and this time setting all total deriva-

tives equal to zero. The pump frequency oJ_ is chosen as

the independent parameter, and the differentiation yields

k a_op 1,, aT dwp

OAk dV

÷

dm Om + +----
dwp 0 = \O_/,,,pd_o ,,, aT du o

am dV

d,o---;.'

and

(43a)

(43b)

__ = am, am, dT am, dVdm_ 0 - am, dw, + __ + + (43c)

dwp aoJ, doJp awp aT dwp OV dwp

Again, only the first partial derivatives, evaluated in the

region of consideration, are required. All the partial

derivatives are determined by material characteristics

and the DRO configuration, resulting in three linear equa-

tions with three unknowns, which are solved by the usual

methods. Continuous-frequency coverage can be ob-

tained with an incremental series of continuous-frequency

sweeps. A calculation of tuning in this manner is shown

in Fig. 19. The extent of tuning for the individual sec-

tions will be limited by the range of parameter adjust-

ment. For example, there may be a maximum voltage that

can be applied, or the extent of pump frequency tuning

may be limited. A limit of -+1000 V was used in Fig. 19.

The calculations of two- and three-parameter tuning

show that a DRO can be tuned to any frequency in its

operating range 3 with reasonable adjustment of the tuning

parameters. Continuous tuning is possible over spectral

ranges of approximately the extent of a free spectral

range. Complete coverage of larger spectral regions has

to be done by scanning a series of smaller regions. The

control of individual parameters, particularly tempera-

ture, requires difficult tolerances. The control problem

can be shifted to another, more easily controlled parame-

ter, such as voltage with multiple-parameter control of the

DRO. The degree of correction required on the second

parameter can then be used as an error signal for control

of the first parameter. Fortunately the oscillating fre-

quencies of the monolithic DRO, exclusive of mode hops,

are relatively insensitive to voltage and temperature

changes. If mode hops and cluster jumps are avoided, the

frequency change of the DRO is approximately one half

the frequency change of the pump.

5. SUMMARY

The theory that is used to model tuning of the DRO is

verified at many stages. The first-order threshold ap-

proximation agrees well with more general calculations in
the limit of low cavity loss. The theory accurately models

observed cluster curves for two monolithic MgO:LiNbO3

DRO's. The modeling includes temperature-dependent

dispersion, thermal expansion, and the electro-optic and

piezoelectric effects in the nonlinear material. The ef-

fect of DRO cavity finesse on the fine details of tuning

gives a reasonable explanation of observed cluster jumps.

Further substantiation of the model in the fine details of

tuning is provided by the accurate prediction of the axial-

mode-hop rate for tuning-parameter change.

An understanding of DRO tuning is important for con-

trolled stable operation. Continuous tuning rates were

calculated for single- and multiple-parameter adjustment.

Tolerances for stable operation were estimated. The re-
sults of these calculations will be useful for DRO de-

sign optimization. Multiple-parameter tuning, including

pump-frequency adjustment, will be necessary for reach-

ing any arbitrary frequency in the OPO operating range.

With appropriate control the DRO will be able to produce

stable outputs with a frequency stability as good as that

available in the pump source.

The DRO should find application in the generation of

stable fixed-frequency radiation. Incremental tuning in

controlled mode hops or cluster jumps will have applica-

tions in spectroscopy and differential absorption lidar

(light detection and ranging). Slow, high-resolution tun-

ing will be possible over limited frequency ranges for spec-

troscopic applications.

The theory presented here could easily be extended

to DRO configurations other than monolithic devices.

Other degrees of freedom, such as direct length control in

a discrete-component DRO, would provide greater versatil-

ity in operation. Independent control of signal and idler

cavity lengths would be useful in providing greatly ex-

tended ranges of continuous tuning. The development
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Table 5. Comparison of Measured and Calculated Values for Parametric Fluorescence in MgO: LiNbO3

514.5-nm Pump Wavelength 488-nm Pump Wavelength

Experimental Obs. Fluorescence Obs. Fluorescence

Temperature Setting Wavelength Calc. Temperature Wavelength

(°C) (nm) (°C) (nm)

Calc. Temperature

(°C)

148 777.1 146.70 673.3 143.17

198 741.2 196.21 653.1 194.93

248 710.8 245.26 634.5 245.18
298 684.5 293.38 617.3 294.12

318 674.8 312.52
348 660.8 341.50 601.3 341.86

398 639.2 389.31 585.7 390.38

448 619.2 436.60

kj

\

of stable DRO operation is now possible through the com-

bination of improved nonlinear-optical materials and

frequency-stable laser development, such as in diode-

pumped solid-state lasers. Optical parametric oscillators

again appear to be on the threshold of reaching a potential

that was first understood twenty-five years ago.

APPENDIX A. MATERIAL PROPERTIES OF

MgO:LiNbO3 RELATED TO DRO TUNING

A. Temperature-Dependent Dispersion
Edwards and Lawrence 26 developed temperature-depen-

dent dispersion equations for congruently grown LiNbO3,

based on data reported by Nelson and Mikulyak 27 and

Smith et al. 2s They use dispersion equations of the form

A2 + B1F
n 2 = AI + + B3F - A4A 2, (A1)

A2- (A3- B2F) 2

where

F= (T- T0)(T + To + 546), (A2)

A is wavelength in micrometers, and T is temperature in

degrees Celsius. Coefficients for congruent LiNbO_ are

as follows:

Ordinary Extraordinary

A1 4.9048 4.5820

A2 0.11775 0.09921
A3 0.21802 0.21090

A4 0.027153 0.021940
B1 2.2314 x 10 -s 5.2716 x 10 -s
B2 -2.9671 × 10 -8 -4.9143 x 10 -B

B3 2.1429 × 10 -8 2.2971 × 10 -7

To 24.5 24.5

The material used in this work is not congruent

LiNbO3; rather, it is 5%MgO:LiNbO3. There are few re-

fractometric data available this material. To obtain an

approximate set of equations for 5%MgO:LiNbO3, the ex-

traordinary index was adjusted by changing AlE from

4.5820 to 4.55207. This has the effect of increasing the

calculated noncritical phase-matching temperature for

1064-532-nm second-harmonic generation from -19.4 to

107.04°C. The measured value for the MgO-doped mate-

rial is 107°C. _9 This modification to the congruent dis-

persion equations accurately reproduces the observed

tuning curve for a singly resonant OPO that was tuned be-

tween 0.85 and 1.48 gm by varying temperature between

122 and 190°C. 3° This modification also predicts para-

metric florescence pumped at 514.5 and 488 nm when the

crystal is tuned between 100 and 450°C (Table 5).

B. Electro-Optic Effect
Electro-optical, piezoelectric, and thermal expansion

characterizations of LiNbO3 are reviewed by R_iuber. 3'

A somewhat more extensive tabulation of electro-optical

coefficient measurements is given by Yariv and Yeh. 32

Their treatment of the electro-optical effect is followed

here. The index ellipsoid in a principal coordinate system

is given by

x 2 y2 z 2
--+--+--=1. (A3)
nx 2 ny 2 nz 2

When an electric field is applied, the electro-optical effect

is described by the modified index ellipsoid

(n_ + rt_Ek)x2 + (n_ + r2kEk)Y2 + (n_ + r3kE_)z2

+ 2r4kEkyz + 2rskE_xz + 2r6kEkxy = 1, (A4)

where

3

r_kEk = _, rik Ek, i = 1.... 6.
k=l

For point group 3m, to which LiNbO3 belongs, the fol-

lowing relationships apply: n_ = n_ = no, n_ -- ne, and

(rik) -_

0 -- r22 r13

0 r22 r13

0 0 r33

0 rsl 0

r51 0 0

-- r22 0 0

(A5)

There are only four independent electro-optical coeffi-

cients. We consider only application of an electric field

along the y axis (E = E_), which further simplifies the

index ellipsoid to

1 - r2_E_ x 2 + + r22Ey y2 +_ + 2rslE_yz = 1
ne2 - .

(A6)
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The presence of the y-z cross term shows that the electro-

optical effect results in a slight rotation of the principal

axes. This is a small effect that accounts for less than 1%

of the refractive-index change even at the highest fields

that are considered here; therefore this rotation is ig-

nored. For propagation in the x direction we have

[1 _-1;2 no_r22E_

n_ = I-n"J + r22Ey I -_ no
(A7)

2/

and

nz _ ne.

Yariv and Yeh 32 list three values for r22 of LiNbO3, mea-

sured with a low-frequency applied electric field for vari-

ous optical wavelengths:

r22(633 nm) = 6.8 x 10 -12 m/V,

r22(1.15 gm) = 5.4 x 10 -12 m/V,

r22(3.39 _zm) = 3.1 x 10 -12 m/V.

These values suggest that we use r22 = 5.5 x 10 -12 m/V

near the wavelength 1.06 t_m, the wavelength region at

which our 5%MgO:LiNbO_ DRO was operated. The value

6.8 x 10 -12 m/V is from a measurement reported in
1967. _3 Note that this measurement was made even be-

fore the growth of congruent LiNbO3 was reported. 34'3s

We are working with an still slightly different material

5%MgO:LiNbO3, 24'_s and caution is required in applying

these values.

C. Thermal Expansion

Thermal expansion measurements to second order in tem-

perature for LiNbOa are reported by Kim and Smith. 3s

They express the fractional change of length with the

quadratic function

hl
-- = a(T - TR) + fl(T - TR) 2, (AS)
l

where l is length, hl is change in length, T is temperature

in degrees Celsius and TR = 25°C is a reference tempera-

ture. The DRO length is measured along the crystal x

axis. One set of coefficients,

a11 = (1.54 x lO-S)°C-I

and

fin = (5.3 x 10 _)°C 2,

applies to expansion in the x-y plane, and a second set

applies to expansion in the z direction. The spread in the

measurements reported by Kim and Smith suggests an ac-

curacy of -10% in the two coefficients.

D. Piezoelectric Effect

The direct piezoelectric effect describes the electric polar-

ization P that results when a stress T is applied to a mate-

rial by the relationship

P, = d_h T_k, (A9)

where d,jk are the piezoelectric moduli. The converse

piezoelectric effect describes the strain S that results

Vol. 8, No. 3/March 1991/J. Opt. Soc. Am. B 665

when an electric field is applied to a piezoelectric material

by the relationship 37

S_k = dokE,. (A10)

Summation of the repeated indices is implied in both

of the above equations, and the moduli d,#k are the same

in both equations. The elongation of the DRO cavity is

given by S_, the x component of the change of a vector

that lies in the x direction. For these measurements an

electric field is applied in the y direction, Ey, and the

modulus dz_ is required for the calculation of strain. The

symmetry of the stress tensor permits the use of a con-

tracted subscript notation in which the modulus d2n is ex-

pressed as d2_. The 3m symmetry of the lithium niobate

crystal reduces the number of independent moduli to four.

The reduced matrix of piezoelectric moduli for the point

group 3m is

0 0 0 0 d15 -2d22 /

(dim)= -d22 d22 0 dI5 0 _ ]"d31 d31 d33 0 0

(All)

From the relationships among the moduIi, it follows that

strain is given by

Sn = d2nE2 = d21E2 = -d22E_. (A12)

The value of the piezoelectric modulus reported by Smith

and Welsh, 3s d2z = (2.08 x 10 -n) C/N, is used. They

identify the LiNbO3, which they used as commercially

grown, with a Curie point of 1165°C. Sound-propagation

measurements were used to determine the piezoelec-

tric moduli.

The derivatives used in Eqs. (21)-(23) are expanded in

Eqs. (18) and Table 1. Evaluation for the experimental

conditions described in Section 3 with the material prop-

erties described above is given in Table 2. Derivatives

involving the electro-optic and the piezoelectric effects

are given with respect to the voltage applied to the elec-

trodes on the crystal surfaces perpendicular to the y axis.

An effective crystal thickness between the electrodes, t, is

used, and the derivatives are given by

OAk toini3) r22 , (A13)
= (W_ns3 + zct

Om c[o t 1(n._o_ + n,o),)d22 + (oJ.n. 3 + _o_n,3) 2 ,

(A14)

and

Om_ov- rrctl (n_to,d22 + _o,n_3r221 "2] (AI5)
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Note added in proof." The tuning properties of doubly

resonant oscillation in waveguide OPO's have been ob-

served by Suche and Sohler. 39 There are many similari-

ties between the tuning properties described here and

those reported for the waveguide cavities. Piskarskas

et al. 4° have reported cluster effects in the output of DRO's

synchronously pumped by cw mode-locked laser output.

Wong 41 has proposed the use of DRO's for optical frequency

synthesis. The increased photoconductivity and the trap-

ping of charges in MgO:LiNbO3 may pose some problems
in the use of dc electric fields with that material. 2S

*Present address, MIT Lincoln Laboratory, 244 Wood

Street, Lexington, Massachusetts 02173.

tPresent address, IBM Almden Research Center, 650

Harry Road, San Jose, California 95120.
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